科技日报记者 陆成宽
(相关资料图)
化学反应无处不在。在化工生产过程中,工程师们通过添加催化剂,改变化学过程的温度、压力等参数,可以在一定程度上控制化学反应,得到所需的化学反应产物。
事实上,如何精准调控化学反应是化学科学研究的核心目标之一。
近日,我国科学家在精准调控化学反应这一研究方向上取得重要进展。通过控制分子化学键方向,中国科学院大连化学物理研究所杨学明院士、肖春雷研究员实验团队联合张东辉院士、张兆军副研究员理论团队,实现了化学反应的立体动力学精准调控。相关研究成果1月13日以长文的形式发表于《科学》杂志。
大连化物所研究人员在控制氢分子化学键取向的激光器前工作。
化学反应的实质是原子、分子等微观粒子相互碰撞并引发旧化学键断裂、新化学键形成的过程。立体动力学效应是化学反应中一个基础而重要的问题,关注的是碰撞过程中反应物分子的空间取向对反应过程有何影响。
“立体动力学效应的根源在于反应物分子并非简单的质点,而是有着具体的结构和形状。”肖春雷说,比如,氢分子由两个氢原子通过共价键连接形成,就像一个哑铃。
因此,当另一个反应物与氢分子发生碰撞时,它从氢分子的一端发起攻击,或者直接攻击氢分子的共价键,这两种情况的反应几率和相应的动力学过程可能会表现出明显的差别。
一直以来,如何利用化学反应中的立体动力学效应,实现对化学反应过程和结果的精细控制,是化学动力学研究中的前沿问题之一。
氢分子是最简单的分子,并且其是非极性双原子分子,在与另一分子相互接近的过程中,不容易发生取向变化。因此,氢分子参与的基元化学反应是研究立体动力学效应的理想模型。
但是,长期以来,人们难以在实验上制备足够数量的具有特定取向的氢分子,因此无法研究相关反应中的立体动力学现象。
针对这个挑战,杨学明、肖春雷实验团队研制了高能量、单纵模纳秒脉冲光参量振荡放大器,实现了对氢分子化学键取向的控制。
同时,为了理解其中的动力学过程,张东辉、张兆军理论团队开展了非绝热量子动力学模拟,精确重现了实验所观测到的现象,并详细分析了该反应中存在的立体动力学效应,揭示了量子干涉现象在垂直碰撞构型反应中发挥了重要的作用。
“之前的化学反应研究可能像‘抽盲盒’,它是由本来的量子属性决定好的,科研人员不能随便控制,我们只能有一定的概率抽取到想要的结果。”张东辉说,“但现在我们可以通过精确的控制,激发特定化学键并控制它的方向,直接得到自己想要的结果。”
审稿人对于该工作给予了高度评价,认为它是反应动力学领域里程碑式的突破。
研究人员表示,这项研究通过高精度的实验和理论研究,验证了通过氢分子量子态空间取向的操控,可以对化学反应进行精细调控,表明了人类对化学反应的认识和调控达到了一个新的高度。
(图片由中科院大连化物所提供)