【资料图】
科技日报记者 吴长锋
记者21日从中国科学技术大学获悉,该校心理学系何晓松特任研究员等通过将单侧颞叶癫痫作为损伤模型,结合弥散加权成像和正电子发射断层扫描等多模态影像技术,揭示了患者大脑中控制能量消耗异常与葡萄糖代谢异常的关联,为网络控制理论在心理学和脑科学研究中的应用提供了潜在的生理基础。研究成果日前发表在《科学进展》上。
作为重量占比仅2%的人体器官,大脑需要消耗超过人体日均能耗20%的能量以驱动其动态活动,行使日常功能。那么,这种生物学形式的能量消耗,如葡萄糖代谢,是否与工程学意义上的“控制能量”存在联系?
为了回答这个问题,研究团队基于颞叶癫痫患者和健康对照的大脑结构连接网络,通过网络控制理论模拟了两种具有代表性的大脑动态进程,并估算了这些进程中大脑所需消耗的控制能量。结果发现,患者在模拟边缘系统网络(癫痫发作和传播的核心区域)激活过程中所需消耗的控制能量显著高于健康对照组,并且这种能效异常与患者致痫灶的偏侧化高度一致。在患侧海马、杏仁核等7个边缘系统脑区,患者大脑需要消耗更多的控制能量以维系预定的大脑动态进程。
通过正电子发射断层扫描技术,证实这些脑区的基线葡萄糖代谢水平与控制能量消耗水平呈负相关,这也意味着,想要达到同等激活水平,更低的代谢基线可能会带来更高的能量需求,并可通过控制能量这一指标量化。尤其是在海马,更高的结构萎缩与更低的基线葡萄糖代谢及更高的控制能量消耗相关,并且葡萄糖代谢水平可以完全中介结构萎缩与控制能量消耗二者间的联系。这也提示,海马结构损害可能带来基线葡萄糖代谢的降低,并最终导致在维系大脑动态进程时更高的能耗成本。
这一成果首次为“控制能量”提供了潜在的生理性解释,为网络控制理论在心理学和脑科学领域的进一步应用奠定了基础。
(中国科大供图)